Experimental aspects of the RHIC spin program

Outline

■ The STAR detector

■ The PHENIX detector

Polarized proton collider RHIC

- First results (STAR / PHENIX)
 - Future prospects (STAR / PHENIX)
 - Summary and Outlook

Introduction

RHIC Spin program (e.g. △G)

 Fundamental question: How is the proton spin made up?

$$J = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z^q + L_z^g$$

⇒ SMC result: Fraction of proton spin carried by quarks is small:

$$\Delta\Sigma_{(AB)} = 0.38^{+0.03}_{-0.03}$$
 at $Q_i^2 = 1 \text{GeV}^2$

⇒ Where is the spin of the proton then?

⇒ SMC QCD-fit:

 ΔG and $(L_z^q + L_z^g)$

• At present: $\triangle G$ is only poorly constrained from scaling violations in fixed target DIS experiments

$$\Delta G_{(AB)} = 0.99^{+1.17}_{-0.31}$$
 at $Q_i^2 = 1 \text{GeV}^2$

B. Adeva et al., SMC Collaboration, Phys. Rev. D58 (1998) 112002.

• Need: New generation of experiments to explore the spin structure of the proton: polarized proton collisions at RHIC which allows to access directly ΔG in polarized pp collisions!

- Unique multi-year program which has just started...!
- Explore various aspects of the spin structure and dynamics of the proton in a new domain:
 - ⇒ Spin structure of the proton (gluon polarization, flavor decomposition, transversity)
 - ⇒ Spin dependence of fundamental interactions
 - ⇒ Spin dependence of fragmentation
 - ⇒ Spin dependence in elastic polarized pp collisions

Asymmetries

- ⇒ Measurement of asymmetries (A): Principal approach to study spin effects
- \Rightarrow Ultimately at RHIC, any combination of beam polarization (longitudinal (+/-) /transverse (\uparrow / \downarrow)) is possible, which allows to access different aspects of the proton spin structure
- Statistical significance (FOM=figure-of-merit):
- \Rightarrow Single spin asymmetry: $P^2 \cdot \int L dt$
- \Rightarrow Double spin asymmetry: $P^4 \cdot \int L dt$

• Double longitudinal-spin asymmetry:

$$A_{LL} = \frac{(\sigma_{++} + \sigma_{--}) - (\sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--}) + (\sigma_{+-} + \sigma_{-+})}$$

- \Rightarrow Study helicity distribution functions, e.g. gluon polarization: $\triangle G!$
- Δq Δg Δg

• Single longitudinal-spin asymmetry:

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

⇒ Study parity violation effects and flavor decomposition!

$$\Delta d + \overline{u} \to W^{-}$$

$$\Delta \overline{u} + d \to W^{-}$$

$$\Delta \overline{d} + u \to W^{+}$$

$$\Delta u + \overline{d} \to W^{+}$$

$$l = e, \mu$$

Asymmetries

• Single transverse-spin asymmetry:

$$A_N = rac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}$$

- ⇒ Study transverse spin effects:
- Sivers: include intrinsic transverse component, k_⊥, in initial state (orbital momentum)
- Collins: include intrinsic transverse component, k_⊥, in final state (transversity)
- Qiu and Sterman (Initial-state twist-3)/Koike (final-state twist-3)
- Double transverse-spin asymmetry:

$$A_{TT} = \frac{(\sigma_{\uparrow\uparrow} - \sigma_{\downarrow\downarrow}) - (\sigma_{\uparrow\downarrow} + \sigma_{\downarrow\uparrow})}{(\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\downarrow}) + (\sigma_{\uparrow\downarrow} + \sigma_{\downarrow\uparrow})}$$

- \Rightarrow Basic, "naive QCD calculations" (leading-twist, ignore masses of quarks) predict: $A_N=0$ ($A_N\sim m_q/\sqrt{s}$)
- \Rightarrow Non-zero values of ${\bf A_N}$ have been observed at the FNAL experiment E704 for: $\vec p+p\to \pi^{\scriptscriptstyle 0}+X$

 \sqrt{s} = 20 GeV (10 X smaller than at RHIC), 0.5 < p_T < 2.0 GeV

 \Rightarrow Study transverse dependent distribution functions e.g. in jet production or Drell-Yan production (Transversity $\delta q \Rightarrow$ Last unmeasured leading twist distribution function)!

Experimental aspects on asymmetry measurements at RHIC: A_N

• Measurement of A_N for forward π^0 production at STAR:

$$\vec{p} + p \rightarrow \pi^0 + X$$
 Forward π^0 ($\pi^0 \rightarrow \gamma \gamma$) production x_F ($\approx E_{\pi^0}/E_{beam}$) ~ 0.2 - 0.6 and $p_T \sim 1$ - 3 GeV

Asymmetry:

$$N_{\uparrow(\downarrow)}(\phi) = L_{\uparrow(\downarrow)} \sigma \Delta \Omega \left(1 \pm PA_N \cos \varphi\right)$$

$$N_{\uparrow}^{L} = L_{\uparrow(\downarrow)} \sigma \, \Delta\Omega \left(1 + PA_{N} \right) \qquad N_{\downarrow}^{L} = L_{\uparrow(\downarrow)} \sigma \, \Delta\Omega \left(1 - PA_{N} \right)$$

$$N_{\uparrow}^{R} = L_{\uparrow(\downarrow)} \sigma \, \Delta\Omega \left(1 - PA_{N} \right) \qquad N_{\downarrow}^{R} = L_{\uparrow(\downarrow)} \sigma \, \Delta\Omega \left(1 + PA_{N} \right)$$

$$\varepsilon = PA_N = \frac{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} - \sqrt{N_L^{\downarrow} N_R^{\uparrow}}}{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} + \sqrt{N_L^{\downarrow} N_R^{\uparrow}}}$$

- Determination of A_N requires three measurements:
 - 1. Spin dependent event yield: $N_{\uparrow(\downarrow)}$
 - 2. Relative luminosity: $R=L_{\uparrow}/L_{\downarrow}$ (Essential for longitudinal asymmetry measurements!)
 - 3. Beam polarization: P

$$\varepsilon = PA_N = \frac{N_{\uparrow}/L_{\uparrow} - N_{\downarrow}/L_{\downarrow}}{N_{\uparrow}/L_{\uparrow} + N_{\downarrow}/L_{\downarrow}} = \frac{N_{\uparrow} - R \cdot N_{\downarrow}}{N_{\uparrow} + R \cdot N_{\downarrow}}$$

- A_N: DIFFERENCE over SUM In general quite small ⇒ Require therefore:
 - 1. Statistical precision
 - 2. Control of systematic effects

Polarized proton collider RHIC

Overview of RHIC polarized pp collider complex

Machine performance overview (FYO2)

Achievements in FY02:

Beam energy: 100 GeV

Inst. luminosity: $\sim 5 \cdot 10^{29} \text{ s}^{-1} \text{ cm}^{-2}$

Integrated luminosity: ~ 0.3pb⁻¹

Bunch crossing time: 213ns

Polarization: ~ 0.2 (transverse)

First transverse spin result $(A_N)!$

Polarized proton collider RHIC

Machine performance overview (FYO3)

- Achievements in FY03:
 - ⇒ Beam energy: 100 GeV
 - \Rightarrow Inst. luminosity: $\sim 2 \cdot 10^{30} \text{ s}^{-1} \text{ cm}^{-2}$
 - \Rightarrow Integrated luminosity: $\sim 0.5 \text{ pb}^{-1}$ (transverse) $\sim 0.4 \text{ pb}^{-1}$ (longitudinal)
 - ⇒ Bunch crossing time: 213ns
 - ⇒ Polarization: ~ 0.3 (transverse and longitudinal)
 - \Rightarrow First longitudinal spin result $(A_{LL})!$

Beam polarization (RHIC CNI) FY03 **Blue and**

RHIC/AGS CNI polarimeters

⊗ Beam direction

pC CNI elastic scattering (-t=0.008-0.025GeV/c²):

⇒ Detect recoil carbon

- Very thin carbon ribbon target ($5\mu g/cm^2 \times 25$ mm) in the RHIC beam
- Measure scattered recoil carbon at $\theta_{Lab} \sim 90^\circ$ with E_{carbon} = 0.1 1 MeV (silicon strip detectors)
- Measure E and TOF to identify recoil carbon ions, determine 4-momentum (-t) and determine leftright/up-down asymmetries
- Readout system based on wave-form digitizer (WFD) board to allow high counting rates (~0.5 MHz)

Polarized proton collider RHIC

RHIC polarized gas-jet target

- Absolute polarization measurement using an internal polarized hydrogen gas jet target (⇒ 10% normalization uncertainty on ∆G requires knowledge of beam polarization to ±5%): Calibrate fast RHIC CNI polarimeter!
- Polarimeter process: Elastic pp scattering at very low t in the CNI region (0.001<|t|<0.02GeV/c²)
- Measure recoil proton in elastic pp scattering using silicon strip recoil detectors
- Properties of polarized hydrogen gas jet target:
 - Polarization: ~90%
 - Density: 5·10¹¹ p/cm³
 - Target polarization measurement: Breit-Rabi polarimeter
 - Transfer target polarization to beam polarization using self-calibration method: A_N for $p_{\text{target}}^\uparrow p \to pp \qquad pp_{\text{beam}}^{\uparrow(\downarrow)} \to pp$

are identical in magnitude:

$$p_{\text{target}} \to A_N^{pp} \to P_{\text{beam}}^{pp} \to A_N^{pC} \to P_{\text{beam}}^{pC}$$

 Goal: 10% accuracy on beam polarization in 2004 with final goal of 5% in 2005

Polarized proton collider RHIC

Overview of commissioning status

- Commissioning status:
- ✓ Siberian snake and spin rotator magnets successfully commissioned
- ✓ Fast polarimeters in AGS/RHIC demonstrated to work
- ☑ Spin transfer AGS to RHIC demonstrated to work
- ☐ Installation and commissioning of AGS partial snake magnets
- ☐ Commissioning of polarized gas jet target (

 Absolute polarization measurement!)
- □ Commissioning of 250GeV ramp
- ☐ Adequate time for commissioning and luminosity development...!

RHIC SPIN
effort is in
the
beginning of
its multiyear
program!

- Warm snake avoids polarization mismatch at AGS injection and extraction
- Cold strong snake eliminates all depolarizing resonances in AGS

⇒ 5 % helical snake build at Tokana Industries funded by RIKEN (Just arrived at BNL!).

Installation: Jan. 2004!

⇒ 30% s.c. helical snake build at SMD (AIP)
Installation: Oct. 2004!

Overview

Upgrade program of the STAR experiment for the first polarized proton collisions (FY02/FY03):

- Beam-Beam Counter (BBC): (2 < η < 5)
 - ⇒ Relative luminosity measurement
 - ⇒ Rejection of beam-gas event in pp collisions
 - ⇒ Minimum bias trigger
 - ⇒ Beam tuning to make collisions at STAR
 - ⇒ Luminosity monitor
- Forward-Pion Detector (FPD) (3 < η < 4)
 - ⇒ Electromagnetic calorimeter system: Prototype setup of 3 Pb-glass arrays and 1 Pb-scintillator calorimeter east side for FYO2
 - ⇒ Upgrade in FY03: Pb-glass array on EAST/WEST
 - \Rightarrow Energy and shower profile measurement $(\pi^0 \to \gamma \gamma)$
 - \Rightarrow Event yield for Forward π^0 production
- Commissioning of EM-calorimeter modules and trigger (Barrel: -1 < η < 1 & Endcap: 1.09 < η < 2)
- Commissioning of spin scaler system

STAR Beam-Beam Counter (BBC)

- Hexagonal scintillator array structure at ± 3.5 m from IP:
 - \Rightarrow Inner annulus: inner (outer) diameter 9.6cm (48cm) of 18 pixels (3.3 < η < 5.0)

 \Rightarrow Outer annulus: inner (outer) diameter 38cm (193cm) of 18 pixels (2.0 < η < 3.3)

- Singe scintillator tile:
 - ⇒ 1 cm thick scintillator
 - ⇒ 4 optical fibres for light collection
 - \Rightarrow ~ 15 photoelectron/MIP

Forward-Pion Detector (FPD) prototype setup (FYO2)

· extensively tested at SLAC

FPD upgrade for FY03 run

- Physics motivation:
 - A_N measurement for $\vec{p} + p \rightarrow \pi^0 + X$
 - Tuning of STAR spin rotator (Local polarimeter)
 - Gluon density in heavy nuclei: $d + Au \rightarrow \pi^0 + X$
- Acceptance:
 - Forward rapidity: 3 < n < 4
 - High $x_F: x_F > 0.2$
 - Moderate p_¬: 1 < p_¬ < 4 GeV</p>

STAR calorimeter system: Barrel

- Barrel Calorimeter: $-1 < \eta < 1$
 - ⇒ Lead-scintillator EM calorimeter (~20 X₀)
 - \Rightarrow 120 modules with: $\Delta \Phi X \Delta \eta = 0.1 X 1.0$
 - \Rightarrow 40 towers per module: $\Delta \Phi \times \Delta \eta = 0.05 \times 0.05$
 - \Rightarrow Shower max. detector (SMD): wire proportional counter (γ/π^0 discrimination)
 - ⇒ Pre-shower layers
 - ⇒ Installed (FY04): 90/120
 - ⇒ Instrumented towers: 75/120
 - ⇒ Instrumented SMD: 75/120

STAR calorimeter system: Endcap

- Endcap calorimeter: $1.09 < \eta < 2$
- ⇒ Lead-scintillator calorimeter (~24 X₀)
- \Rightarrow 780 towers with: $\Delta\Phi$ = 0.1, $\Delta\eta$ = 0.057 at η = 1.09 to 0.099 at η = 2
- \Rightarrow Shower max. detector (SMD): scintillator strip layers (γ/π^0 discrimination)
- ⇒ Pre-shower and post-shower layers
- ⇒ Complete EEMC installed (FY04 run)
- ⇒ Instrumented: 720 towers and 1/3 (4 sectors) SMD and pre/post shower

STAR BBC luminosity monitoring

Abort gaps ⇒ beam-gas background!

Relative Luminosity

- Determine relative luminosity of bunch-crossings with different polarization
 - Accuracy: $\delta R_{stat} \sim 10^{-4}$ 10^{-3} and $\delta R_{sys} \sim 3.10^{-3}$

Polarization pattern at STAR: Spin Up
Spin Down Unpolarized O

First results (STAR)

BBC asymmetries: Used for STAR spin rotator tuning during FY03 run

- Spin manipulation around IR's:
 - 1. Stable spin direction at RHIC is vertical
 - Spin Rotater brings spin to almost radial orientation
 - 3. DO/DX magnet causes spin precession
 - 4. Longitudinal at IR
 - 5. DX/D0/Spin Rotater put spin back to vertical

 $3.3 < |\eta| < 5.0$ (small tiles only)

Yellow beam

Days since 05/01/03

First results (STAR)

First measurement of A_N for forward π^0 production at RHIC

- A_N is found to increase with energy similar to E704 result (\sqrt{s} = 20 GeV (10 X smaller than at RHIC), 0.5 < p_T < 2.0 GeV)
- This behavior is also seen by several models which predict non-zero A_N values
- Several approaches beyond the basic "naive QCD calculations" yield non-zero A_N values at RHIC energies:
- ⇒ Sivers: include intrinsic transverse component, k_⊥, in initial state (orbital momentum) (before scattering takes place)
- \Rightarrow Collins: include intrinsic transverse component, k_{\perp} , in final state (transversity) (after scattering took place)
- ⇒ Qiu and Sterman (Initial-state twist-3)/Koike (final-state twist-3): more "complicated QCD calculations" (higher-twist, multi-parton correlations)

Forward π^0 production cross-section in comparison to NLO calculations

- Measured forward π^0 production cross-section in comparison to NLO pQCD calculations
- NLO pQCD calculations:
 - CTEQ6M parton distribution function
 - Equal renormalization and factorization scale set to p_{τ}
 - Two sets of fragmentation functions:
 - ⇒ Kniehl-Kramer-Pötter (KKP)
 - ⇒ Kretzer
- Measured results fall in-between two NLO pQCD which reflect uncertainties in the underlying fragmentation functions
- Data compares favorably to NLO pQCD at $\int s = 200 GeV$ in contrast to fixed-target or ISR energies

First results (STAR)

lacktriangle RHIC forward π^0 production cross-section in comparison to lower energy data

- Bourelly and Soffer (hep-ph/0311110): Comparison of forward π^0 production to pQCD NLO calculations
- Comparison illustrates that agreement of measured cross-sections to pQCD NLO calculations for forward π^0 production improves with increasing center-of-mass energy, i.e. from fixed-target to RHI

First results (STAR)

Inclusive jet production (FY03)

- First longitudinal data sample will allow to have a first look at $A_{\rm LL}$ for inclusive jet production
- Condition:
 - Average polarization: 0.25
 - Integrated luminosity: 400nb-1
 - Cone-jet algorithm
 - Trigger:
 - ⇒ High-tower trigger (700k recon. jets): Single tower energy threshold above ~2.4GeV
 - \Rightarrow Jet patch trigger (250k recon. jets): Jet patch (Δη $\times \Delta \Phi$ = 1 \times 1) energy threshold E_{τ} >5GeV
- Expected stat. precision on A_{LL} (EMC+TPC)

Bernd Surrow

The PHENIX detector

Overview

- Main concept of PHENIX:
 - High rate and granularity
 - Good mass resolution and particle ID
- Commissioning of spin scaler system and relative luminosity monitor for first polarized pp run
- Reconstruction of π^0 mesons and high p_T photon trigger:
 - > EMCal: $|\eta|$ <0.38, $\Delta \phi = \pi$, granularity $\Delta \eta \times \Delta \phi = 0.01 \times 0.01$
- Minimum Bias trigger and Relative Luminosity:
 - > Beam-Beam Counter (BBC): $3.0 < |\eta| < 3.9$, $\Delta \phi = 2\pi$

The PHENIX detector

- Relative luminosity measurement: PHENIX BBC and ZDC
 - Both, Beam-Beam Counter (BBC) and Zero-Degree calorimeters (ZDC) are used in the relative luminosity measurement (Important cross-check!)
 - Achieved relative luminosity precision $\delta R = 2.5 \cdot 10^{-4}$
 - Pessimistic estimation limited by ZDC statistics (30 times less than BBC statistics used in Rel. Lum. measurements)
 - A_{LL} of BBC relative to ZDC consistent with 0 (<0.2%)

• Strong indication that both A_{LL} s are zero (Very different kinematical regions, different physics signals)

The PHENIX detector

PHENIX local polarimeter upgrade: ZDC-SMD

220

259

- ZDC asymmetries: Used for PHENIX spin rotator tuning during FY03 run
 - Transverse polarization (Maximum at $\pm \pi/2$):

Azimuthal angle

Azimuthal angle

First results (PHENIX)

- PHENIX π^0 production cross section
 - Data covers over 8 orders of magnitude
 - $p_T = 1 13 \text{ GeV/}c$
 - based on combining minimum bias trigger and EMCal trigger data
 - NLO pQCD calculation is consistent with data
 - CTEQ5M PDF + PKK FF
 - with a scale variation: $\mu = p_{\tau}/2$ and $2p_{\tau}$
 - ⇒ Confidence in understanding subprocesses
 - ⇒ Solid basis for future polarized pp asymmetry measurements

First results (PHENIX)

First measurement of A_{LL} at RHIC for inclusive π^0 production

p _T GeV/c	$A_{LL}^{\pi0+bck}$ $(r_{ m bck})$	A_{LL}^{bck}	$A_{LL}^{\pi0}$ (Background subtracted)
1-2	-0.028±0.012 (45%)	-0.006±0.014	-0.046±0.025
2-3	-0.022±0.015 (17%)	-0.035±0.027	-0.019±0.019
3-4	-0.002±0.033 (7%)	0.094±0.092	-0.009±0.036
4-5	-0.023±0.074 (5%)	0.38±0.24	-0.045±0.079

- Polarization scaling error $\delta P \sim 30\%$ is not included:
 - Enters A_{LL} in quadrature
 - Analyzing power $A_N(100 \text{ GeV}) \sim A_N(22 \text{GeV})$ is assumed
 - $\delta P \sim 30\%$: combined stat. and sys. error for $A_N(22GeV)$ (AGS E950)
- Relative luminosity contribution to π^0 A_{LL} error is <0.2%
- p_T smearing correction is not included

Future prospects

\blacksquare Prospects on constraining $\triangle G$ in RUN4

Mention here PHENIX pi0!

Future prospects

Quark-Gluon Compton scattering: Prospects at STAR

• Simulated A_{LL} at two different RHIC center-of-mass energies:

 \Rightarrow Combined data sample at 200 GeV and 500 GeV is essential to minimize extrapolation errors in determining ΔG :

$$\Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$
 Accuracy: 0.5

 \Rightarrow Ultimately: Global analysis of various ΔG !

- ⇒ Multi year program at RHIC which requires:
 - 1. High luminosity
 - 2. High polarization
 - 3. $\sqrt{s} = 200 / 500 GeV$

$$A_{LL} \cong \frac{\Delta G(x_g)}{G(x_g)} \cdot A_1^p(x_q) \cdot \hat{a}_{LL}^{(g+q\to\gamma+q)}(\cos\theta^*)$$

$$\overrightarrow{p} + \overrightarrow{p} \to \gamma + jet + X$$
 $\sqrt{s} = 200 \text{ GeV}, 320 \text{ pb}^{-1}$
 $\sqrt{s} = 500 \text{ GeV}, 800 \text{ pb}^{-1}$

Heavy Flavor production: PHENIX VTX upgrade

- Measurement of Gluon polarization by Heavy flavor production
 - c, b \rightarrow e, μ + displaced vertex
 - B \rightarrow displaced J/ ψ
 - D \rightarrow K π at high pt
- VTX measurement of displaced vertex
 - Improved $S/B \rightarrow higher sensitivity to <math>\Delta G(x)$
 - Broader x coverage

Pixel barrels (50 mm x 425 mm)
Strip barrels (80 mm x 3 cm)
Endcap (extension) (50 mm x 2 mm)

1 - 2% X₀ per layer barrel resolution < 50 mm endcap resolution < 150 mm

 \Rightarrow VTX increases the x coverage of $\Delta G(x)$ measurement!

Future prospects (STAR)

W production: Flavor dependence

- W[±] production in pp collisions probes flavor structure of QCD sea analogous to deep-inelastic scattering
- Polarized proton beams allow the measurement of (the expected large) parity violation in W[±] production
- Forward e (μ) detection (STAR forward tracking upgrade needed!) (⇒Asymmetric partonic collisions!) gives direct access to probe the underlying quark (anti-quark) polarization which is dominated at RHIC

Summary and Outlook

RHIC Spin program at BNL

- First successful polarized proton collisions ever at RHIC (transverse and longitudinal)
- Successful upgrade and commissioning of various new STAR /PHENIX components for the first polarized proton run at RHIC

First measurement of AN (STAR) and AN (PHENIX)

 First measurement of ALL (PHENIX) and STAR (JETS)

- Unique opportunity to explore the spin structure and dynamics of the proton in a new unexplored regime at RHIC over the next years.
 - Gluon polarization
 - Short-term: PiO and Jets
 - Long-term: Prompt photons and hpgyy phosburce production
 - Flavor decomposition (W production)
 - Transverse spin dynamics (AN) and transversity

